A Weberized Total Variation Regularization-Based Image Multiplicative Noise Removal Algorithm
نویسندگان
چکیده
Multiplicative noise removal is of momentous significance in coherent imaging systems and various image processing applications. This paper proposes a new nonconvex variational model for multiplicative noise removal under the Weberized total variation (TV) regularization framework. Then, we propose and investigate another surrogate strictly convex objective function for Weberized TV regularization-based multiplicative noise removal model. Finally, we propose and design a novel way of fast alternating optimizing algorithm which contains three subminimizing parts and each of them permits a closed-form solution. Our experimental results show that our algorithm is effective and efficient to filter out multiplicative noise while well preserving the feature details.
منابع مشابه
Fast linearized alternating direction minimization algorithm with adaptive parameter selection for multiplicative noise removal
Owing to the edge preserving ability and low computational cost of the total variation (TV), variational models with the TV regularization have been widely investigated in the field of multiplicative noise removal. The key points of the successful application of these models lie in: the optimal selection of the regularization parameter which balances the data-fidelity term with the TV regulariz...
متن کاملFast algorithm for multiplicative noise removal
In this work, we consider a variational restoration model for multiplicative noise removal problem. By using a maximum a posteriori estimator, we propose a strictly convex objective functional whose minimizer corresponds to the denoised image we want to recover. We incorporate the anisotropic total variation regularization in the objective functional in order to preserve the edges well. A fast ...
متن کاملTotal variation as a multiplicative constraint for solving inverse problems
The total variation minimization method for deblurring noise is shown to be effective in increasing the resolution in a contrast source inversion approach to index reconstruction from measured scattered field data. The main drawback is the presence of an artificial weighting parameter in the cost functional, which can only be determined through considerable experimentation Therefore, we introdu...
متن کاملAn Adaptive Fractional-Order Variation Method for Multiplicative Noise Removal
This paper aims to develop a convex fractional-order variation model for image multiplicative noise removal, where the regularization parameter can be adjusted adaptively according to balancing principle at each iterations to control the trade-off between the fitness and smoothness of the denoised images. In the light of the saddle-point theory, a primal-dual algorithm has been applied to solve...
متن کاملA Multiplicative noise removal model with spatially adaptive regularization parameters
In this article, we propose a total variation (TV) based model for removing multiplicative Gamma noise. The model integrates the data-fitting energy proposed in [1] with a spatially adaptive regularization parameter (SARP) approach. The data-fidelity term enables to deal with heavy multiplicative noise. And the SARP allows to preserve textures and edges while effectively removing the noise in h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010